Refine Your Search

Topic

Author

Search Results

Technical Paper

Effect of inlet valve timing on boosted gasoline HCCI with residual gas trapping

2005-05-11
2005-01-2136
With boosted HCCI operation on gasoline using residual gas trapping, the amount of residuals was found to be of importance in determining the boundaries of stable combustion at various boost pressures. This paper represents a development of this approach by concentrating on the effects of inlet valve events on the parameters of boosted HCCI combustion with residual gas trapping. It was found that an optimum inlet valve timing could be found in order to minimize NOx emissions. When the valve timing is significantly advanced or retarded away from this optimum, NOx emissions increase due to the richer air / fuel ratios required for stable combustion. These richer conditions are necessary as a result of either the trapped residual gases becoming cooled in early backflow or because of lowering of the effective compression ratio. The paper also examines the feasibility of using inlet valve timing as a method of controlling the combustion phasing for boosted HCCI with residual gas trapping.
Technical Paper

Applying boosting to gasoline HCCI operation with residual gas trapping

2005-05-11
2005-01-2121
The application of Homogeneous Charge Compression Ignition (HCCI) combustion to naturally aspirated engines has shown a much reduced usable load range as compared to spark ignition (SI) engines. The approach documented here applies inlet charge boosting to gasoline HCCI operation on an engine configuration that is typical for SI gasoline engines, in conjunction with residual gas trapping. The latter helps to retain the benefits of much reduced requirement for external heating. In the present work, the achievable engine load range is controlled by the level of boost pressure while varying the amount of trapped residual gas. In addition, it was found that there is a maximum amount of boost that can be applied without intake heating for any given amount of trapped residuals. NOx emissions decrease with increasing amounts of trapped residual.
Technical Paper

In-cylinder Flow with Negative Valve Overlapping - Characterised by PIV Measurement

2005-05-11
2005-01-2131
Negative valve overlapping is widely used for trapping residual burned gas within the cylinder to enable controlled Homogeneous Charge Compression Ignition (HCCI). HCCI has been shown as a promising combustion technology to improve the fuel economy and NOx emissions of gasoline engines. While the importance of in-cylinder flow in the fuel and air mixing process is recognised, the characteristics of air motion with specially designed valve events having reduced valve lift and durations associated with HCCI engines and their effect on subsequent combustion are not yet fully understood. This paper presents an investigation in an optical engine designed for HCCI combustion using EGR trapping. PIV techniques have been used to measure the in-cylinder flow field under motored conditions and a quantitative analysis has been carried out for the flow characterisation with comparison made against the flow in the same engine with conventional valve strategies for SI combustion.
Technical Paper

An Experimental Study of Combustion Initiation and development in an Optical HCCI Engine

2005-05-11
2005-01-2129
The major characteristics of the combustion in Homogeneous Charge Compression Ignition (HCCI) engines, irrespective of the technological strategy used to enable the ‘controlled auto-ignition’, are that the mixture of fuel and air is preferably premixed and largely homogeneous. Ignition tends to take place simultaneously at multiple points and there is no bulk flame propagation as in conventional spark-ignition (SI) engines. This paper presents an experimental study of flame development in an optical engine operating in HCCI combustion mode. High resolution and high-speed charge coupled device (CCD) cameras were used to take images of the flame during the combustion process. Fuels include gasoline, natural gas (NG) and hydrogen addition to NG all at stoichiometric conditions, permitting the investigation of combustion development for each fuel. The flame imaging data was supplemented by simultaneously recorded in-cylinder pressure data.
Technical Paper

Control of A/F Ratio During Engine Transients

1999-05-03
1999-01-1484
Variations in air-fuel ratio within a 16-valve port-injection spark-ignition engine have been examined as a consequence of rapid transients in load at constant speed with fuel injection controlled by the production engine-management system and by a custom-built controller. The purpose was to minimize excursions from stoichiometry by the use of a controller to impose an injection strategy, guided by results obtained with the production management system. The strategy involves a model that takes account of manifold filling and the delays in transport of fuel from the injectors to the cylinder. The results show that the excursions in air-fuel ratio from stoichiometry were reduced from more than 25% to 6%.
Technical Paper

Influence of Coolant Temperature on Cold Start Performance of Diesel Passenger Car in Cold Environment

2016-02-01
2016-28-0142
Diesel engines are the versatile power source and is widely used in passenger car and commercial vehicle applications. Environmental temperature conditions, fuel quality, fuel injection strategies and lubricant have influence on cold start performance of the diesel engines. Strategies to overcome the cold start problem at very low ambient temperature include preheating of intake air, coolant, cylinder block. The present research work investigates the effect of coolant temperatures on passenger car diesel engine’s performance and exhaust emission characteristics during the cold start at cold ambient temperature conditions. The engine is soaked in the -7°C environment for 6 hours. The engine coolant is preheated to the desired coolant temperatures of 10 and 20°C by an external heater and the start ability tests were performed.
Technical Paper

The Comparative Study of Gasoline and n-butanol on Spray Characteristics

2014-10-13
2014-01-2754
n-butanol has been recognized as a promising alternative fuel for gasoline and may potentially overcome the drawbacks of methanol and ethanol, e.g. higher energy density. In this paper, the spray characteristics of gasoline and n-butanol have been investigated using a high pressure direct injection injector. High speed imaging and Phase Doppler Particle Analyzer (PDPA) techniques were used to study the spray penetration and the droplet atomization process. The tests were carried out in a high pressure constant volume vessel over a range of injection pressure from 60 to 150 bar and ambient pressure from 1 to 5 bar. The results show that gasoline has a longer penetration length than that of n-butanol in most test conditions due to the relatively small density and viscosity of gasoline; n-butanol has larger SMD due to its higher viscosity. The increase in ambient pressure leads to the reduction in SMD by 42% for gasoline and by 37% for n-butanol.
Technical Paper

Investigation on the Performance of Diesel Oxidation Catalyst during Cold Start at L ow Temperature Conditions

2014-10-13
2014-01-2712
Cold start is a critical operating condition for diesel engines because of the pollutant emissions produced by the unstable combustion and non-performance of after-treatment at lower temperatures. In this research investigation, a light-duty turbocharged diesel engine equipped with a common rail injection system was tested on a transient engine testing bed to study the starting process in terms of engine performance and emissions. The engine (including engine coolant, engine oil and fuel) was soaked in a cold cell at −7°C for at least 8 hours before starting the test. The engine operating parameters such as engine speed, air/fuel ratio, and EGR rate were recorded during the tests. Pollutant emissions (Hydrocarbon (HC), NOx, and particles both in mode of nucleation and accumulation) were measured before and after the Diesel Oxidation Catalyst (DOC). The results show that conversion efficiency of NOx was higher during acceleration period at −7°C start than the case of 20°C start.
Technical Paper

A Study of Methodology for the Investigation of Engine Transient Performance

2014-10-13
2014-01-2714
Automotive engines especially turbocharged diesel engines produce higher level of emissions during transient operation than in steady state. In order to improve understanding of the engine transients and develop advanced technologies to reduce the transient emissions, the engine researchers require accurate data acquisition and appropriate post-processing techniques which are capable of dealing with noise and synchronization issues. Four alternative automated methods namely FFT (Fast Fourier Transform), low-pass, linear and zero-phase filters were implemented on in-cylinder pressure. The data of each individual cycle was compared and analyzed for the suitability of combustion diagnostic. FFT filtering was the best suited method since it eliminated most pressure fluctuation and provided smooth rate of heat release profiles for each cycle.
Technical Paper

Experimental Study of Multiple Premixed Compression Ignition Engine Fueled with Heavy Naphtha for High Efficiency and Low Emissions

2014-10-13
2014-01-2678
A study of Multiple Premixed Compression Ignition (MPCI) with heavy naphtha is performed on a light-duty single cylinder diesel engine. The engine is operated at a speed of 1600rpm with the net indicated mean effective pressure (IMEP) from 0.5MPa to 0.9MPa. Commercial diesel is also tested with the single injection for reference. The combustion and emissions characteristics of the heavy naphtha are investigated by sweeping the first (−200 ∼ −20 deg ATDC) and the second injection timing (−5 ∼ 15 deg ATDC) with an injection split ratio of 50/50. The results show that compared with diesel combustion, the naphtha MPCI can reduce NOx, soot emissions and particle number simultaneously while maintaining or achieving even higher indicated thermal efficiency. A low pressure rise rate can be achieved due to the two-stage combustion character of the MPCI mode but with the penalty of high HC and CO emissions, especially at 0.5MPa IMEP.
Technical Paper

An Experimental Study on the Effects of Split Injection in Stoichiometric Dual-Fuel Compression Ignition (SDCI) Combustion

2015-04-14
2015-01-0847
Stoichiometric dual-fuel compression ignition (SDCI) combustion has superior potential in both emission control and thermal efficiency. Split injection of diesel reportedly shows superiority in optimizing combustion phase control and increasing flexibility in fuel selection. This study focuses on split injection strategies in SDCI mode. The effects of main injection timing and pilot-to-total ratio are examined. Combustion phasing is found to be retarded in split injection when overmixing occurs as a result of early main injection timing. Furthermore, an optimised split injection timing can avoid extremely high pressure rise rate without great loss in indicated thermal efficiency while maintaining soot emission at an acceptable level. A higher pilot-to-total ratio always results in lower soot emission, higher combustion efficiency, and relatively superior ITE, but improvements are not significant with increased pilot-to-total ratio up to approximately 0.65.
Technical Paper

An Experimental Study of EGR-Controlled Stoichiometric Dual-fuel Compression Ignition (SDCI) Combustion

2014-04-01
2014-01-1307
Using EGR instead of throttle to control the load of a stoichiometric dual-fuel dieseline (diesel and gasoline) compression ignition (SDCI) engine with three-way catalyst (TWC) aftertreatment is considered a promising technology to address the challenges of fuel consumption and emissions in future internal combustion engines. High-speed imaging is used to record the flame signal in a single-cylinder optical engine with a PFI+DI dual injection system. The premixed blue flame is identified and separated using green and blue channels in RGB images. The effects of injection timing on SDCI combustion are studied. An earlier injection strategy is found to be ideal for soot reduction; however, the ignition-injection decoupling problem results in difficulties in combustion control. It is also found that a split injection strategy has advantages in soot reduction and thermal efficiency.
Technical Paper

Investigation of VVT and spark timing on combustion and particle emission from a GDI Engine during transient operation

2014-04-01
2014-01-1370
Transient operation is frequently used by vehicle engines and the exhaust emissions from the engine are mostly higher than those under the steady station. An experimental study has been conducted to investigate the effect of various valve timings and spark timings on combustion characteristics and particle emissions from a modern 3.0-liter Gasoline Direct Injection (GDI) passenger car engine. The transient condition was simulated by load increase from 5% to 15% at a constant engine speed with different settings of valve timings and spark timings. The transient particle emission measurement was carried out by a Cambustion DMS500 particulate analyser. The combustion characteristics of the engine during transient operation including cycle-by-cycle combustion variations were analyzed. The time-resolved particle number, particulate mass and particle size distribution were compared and analyzed between different engine settings.
Technical Paper

Effects of Biodiesel Feedstock on the Emissions from a Modern Light Duty Engine

2014-04-01
2014-01-1394
Biodiesel is an oxygenated alternative fuel made from vegetable oils and animal fats via transesterification and the feedstock of biodiesel is diverse and varies between the local agriculture and market scenarios. Use of various feedstock for biodiesel production result in variations in the fuel properties of biodiesel. In this study, biodiesels produced from a variety of real world feedstock was examined to assess the performance and emissions in a light-duty engine. The objective was to understand the impact of biodiesel properties on engine performances and emissions. A group of six biodiesels produced from the most common feedstock blended with zero-sulphur diesel in 10%, 30% and 60% by volume are selected for the study. All the biodiesel blends were tested on a light-duty, twin-turbocharged common rail V6 engine. Their gaseous emissions (NOx, THC, CO and CO2) and smoke number were measured for the study.
Technical Paper

Investigation on the Spray Characteristics of DMF- Isooctane Blends using PDPA

2014-04-01
2014-01-1408
Little research has been done on spray characteristics of 2,5-dimethylfuran (DMF), since the breakthrough in its production method as an alternative fuel candidate. In this paper, the spray characteristics of pure fuels (DMF, Isooctane) and DMF-Isooctane blends under different ambient pressures (1 bar, 3 bar and 7 bar) and injection pressures (50 bar, 100 bar and 150 bar) were studied using Phase Doppler Particle Analyzer (PDPA) and high speed imaging. Droplet velocity, size distribution, spray angle and penetration of sprays were examined. Based on the results, DMF had larger SMD and penetration length than isooctane. The surface tension of fuel strongly influenced spray characteristics. Increasing the surface tension by 26 % resulted in 12 % increase in SMD. Higher ambient pressure increased the drag force, but SMD was not influenced by the increased drag force. However, the increased ambient pressure reduced the injection velocity and We number resulting in higher SMD.
Technical Paper

Impact of Cold Ambient Conditions on Cold Start and Idle Emissions from Diesel Engines

2014-10-13
2014-01-2715
The cold start performance of a diesel engine has been receiving more attention as the European Commission emission regulations directed to include cold start emissions in the legislative emission driving cycles. The cold start performance of diesel engines is influenced by the ambient temperature conditions, engine design, fuel, lubricant and engine operating conditions. The present research work investigates the effect of cold ambient conditions on the diesel engine's performance and the exhaust emission (gaseous and particulate emissions) characteristics during the cold start and followed by idle. The engine startability and idling tests were carried out on the latest generation of diesel engine in a cold cell at various ambient temperatures ranging between +20°C and −20°C. Higher fuel consumption and peak speed were observed at very cold ambient compared to those at normal ambient during the cold start.
Technical Paper

Sensitivity Study of Battery Thermal Response to Cell Thermophysical Parameters

2021-04-06
2021-01-0751
Lithium-ion batteries (LiBs) have been widely used in electrified vehicles, and the battery thermal management (BTM) system is needed to maintain the temperature that is critical to battery performance, safety, and health. Conventionally, three-dimensional battery thermal models are developed at the early stage to guide the design of the BTM system, in which battery thermophysical parameters (radial thermal conductivity, axial thermal conductivity, and specific heat capacity) are required. However, in most literature, those parameters were estimated with greatly different values (up to one order of magnitude). In this paper, an investigation is carried out to evaluate the magnitude of the influence of those parameters on the battery simulation results. The study will determine if accurate measurements of battery thermophysical parameters are necessary.
Technical Paper

Study of Effects of Deposit Formation on GDi Injector and Engine Performance

2020-09-15
2020-01-2099
Gasoline Direct Injection (GDI) vehicles now make up the majority of European new car sales and a significant share of the existing car parc. Despite delivering measurable engine efficiency benefits, GDI fuel systems are not without issues. Fuel injectors are susceptible to the formation of deposits in and around the injector nozzles holes. It is widely reported that these deposits can affect engine performance and that different fuels can alleviate the buildup of those deposits. This project aims to understand the underlying mechanisms of how deposit formation ultimately leads to a reduction in vehicle performance. Ten GDI fuel injectors, with differing levels of coking were taken from engine testing and consumer vehicles and compared using a range of imaging and engine tests. At the time of writing, a new GDI engine test is being developed by the Co-ordinating European Council (CEC) to be used by the fuel and fuel additive industry.
Technical Paper

New CEC Gasoline Direct Injection Fuels Test - Comparison of Deposits and Spray Performance from New and Used Injectors

2019-11-21
2019-28-2392
The use of deposit control additives in European market gasoline is well documented for maintaining high levels of engine cleanliness and subsequent sustained fuel and emissions performance. Co-ordinating European Council (CEC) industry fuels tests have played a crucial role in helping to drive market relevant, effective and low-cost deposit control additives into European market fuels. Until now, there hasn’t been a Gasoline Direct Injection engine test available to fuel marketers in any market globally. However, a new CEC engine test is currently being developed to address that gap. Based on an in-house VW injector coking test, it shows promise for becoming a useful tool with which to develop and measure the performance of deposit control additives. A key requirement of industry tests should be to replicate issues seen in consumer vehicles, thereby providing a platform for relevant solutions.
Technical Paper

Pollutant Emissions of a Blended Plug-in Hybrid Electric Vehicle during High-Power Cold Starts

2023-09-29
2023-32-0096
To characterize emission performance and engine operating conditions during high-power cold starts (HPCS), a blended plug-in hybrid electric vehicle was tested over worldwide harmonized light-duty vehicle test cycle (WLTC), and a new cycle was developed to characterize HPCS. The results showed that the engine speed and load increased dramatically to high level during HPCS under the low temperature of coolant and catalysts. The higher concentration of particle number (PN) and NOx at higher speed and load, accounted for the higher emissions during HPCS. Besides, the cumulative PN emissions increased first and then decreased with the increasing coolant temperature.
X